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Abstract
This report outlines the development of an arcade-style computer game that is appropri-
ate to a wide range of individual players with di�erent skill levels. To this end, a metric
of the player’s skill level is calculated. Game content is generated algorithmically, at a
di�culty level that is appropriate to the player skill level metric using dynamic di�culty
adjustment. Comparing two versions of the game, one with dynamic di�culty adjust-
ment, and one without, revealed that these techniques resulted in a game that was more
appealing to a wide range of players.
Key words: procedural generation, dynamic di�culty adjustment, computer games.
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1 Introduction
1.1 Aims
The aim of this project is to create a video game that adapts its content dynamically
to individual players. The system will create a model of the player’s current skill level.
Given this model the system will procedurally generate game content at a di�culty level
that is appropriate for the player. This will project will require the creation of the game
and game content that these systems will be applied to. The game itself will be an arcade
style space action game.

1.2 Motivation and Context
Computer games are an increasingly prevalent entertainment medium. In
2009 computer games were played by 68% of American households (Hendrikx et al.,
2013). A report conducted by the U.S. Entertainment Software Association (Siwek,
2014) revealed that from 2009 to 2013 U.S. sales of computer games increased from $10.1
billion to more than $15.4 billion.

What is game content? Game content refers to, aside from the player and the game
engine itself, anything in the game that a�ects gameplay. Game content can include
textures, levels, stories, dialogue, and terrain (Peytavie et al., 2009).

What is procedural content generation? ’Procedural content generation’ in the
context of computer games, refers to the use of algorithms to generate game content,
rather than generating it by hand. PCG can be used to generate content on the fly as
the game is running, or to augment the creation process during development.

PCG sees frequent use when memory and file size are constricted. PCG can
be seen frequently in some of the earliest computer games, which were designed around
serious constraints in memory and file size. One such example of successful PCG in
an early computer game is the space-exploration game Elite (Acornsoft, 1984), which
can generate 248 distinct galaxies, each generated by applying the generation algorithm
to a distinct seed value. Contemporary examples also exist: the 2004 game .̌kkrieger
(.theprodukkt, 2004) utilises PCG to pack a first-person shooter into just 97,280 bytes
of disk space. In contrast, the developers claim that a manually generated version of the
game would require 200-300mb. Contemporary advancements in computer hardware have
lessened memory and file size constraints, and generating game content procedurally to
get around hardware constraints has become less of a necessity.

Despite this, PCG is still relevant for contemporary games. First, as reported
by the ESA, smartphone apps are an increasingly substantial area of the computer games
industry: Apple (2013) (cited in Hendrikx et al.) reported that 145 of the top 300 paid
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apps in the Apple App Store were computer games. Smartphones reintroduce memory
and storage constraints (Gao, 2011). Downloading apps on mobile data makes small file
size a priority, and even most high-end smartphones have significantly less RAM available
than home computers. Furthermore, PCG has applications outside of working within
constraints.

PCG can make content creation cheaper. AAA computer games have increased
dramatically in cost since their inception (Takatsuki, 2007). For example, Grand Theft
Auto V (Rockstar, 2014) cost $265 million, and was developed by a team of over 1,000
people over five years. Game development still relies heavily on manual content creation,
and any technology that can mitigate this bottleneck will lower the risk of development,
and allow developers to experiment with riskier game concepts (Yannakakis and Togelius,
2011). For example, the 2012 title SSX utilised PCG to generate three hundred game
levels on the same budget that had been applied to just ten levels on past games (Howard
and Lemus, 2012). Another example of PCG being used to successfully speed up the
content creation process is Speed Tree, foliage generation middle-ware that can generate
a wide range of realistic, animated trees (Togelius et al., 2012).

PCG can personalise the computer game experience to an individual player.
The game playing demographic has expanded dramatically the last twenty years (Taylor,
2006). It is therefore more important than ever for games to adapt their content to the
player’s individual preferences and skill level (Bateman and Boon, 2005). A game that
is able to model the player’s experience and feed this data back into dynamic content
generation can tailor the game content to each player. It is for this reason that this
project aims to implement a dynamic di�culty adjustment system. Pedersen et al. (2009)
demonstrated the possibilities of this approach by modifying a Super Mario Bros clone
to generate levels that are personalised to the player.

Figure 1: Pedersen et al.’s level generation for a human player.

Figure 2: Level generation for the world champion super mario bros AI.

Advancements in computer games have applications in of computer science
and other domains. Computer games have applications beyond entertainment for the
sake of entertainment. Games see use in military simulation (Stanley et al., 2006), and
in training disaster relief workers for disaster situations in a safe manner. The application
of game mechanics in non-game domains, known as gamification, has applications in the
fields of marketing and education. Any technological development that can make games
more accessible can increase the social benefits of existing gamified domains.
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1.3 Report Overview
Following on from this section, Section 2 will examine technical details of existing games
utilising PCG and dynamic di�culty adjustment. Sections 3 and 4 outline the require-
ments analysis and specification. Section 5 examines system requirements such as external
libraries and software languages. Section 6 describes the design and implementation phase.
Rather than separating design and implementation into separate sections, they are con-
sidered alongside each other, to better communicate how the design changed throughout
the implementation process. Section 7 details the testing strategies utilised throughout
development. Section 8 examines project management techniques and software engineer-
ing practises. Section 9 examines evaluation techniques and their results. Section 10 looks
back on the project’s successes and failures. Section 11 is the conclusion, and addresses
how well the project addresses the aims outlined in the introduction. In the appendix can
be found the project schedule, and UML diagrams for some of the project’s classes.
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1.4 Glossary
Seed A number used to initialise a pseudorandom number generator.

First-person shooter A computer game centred around gun combat, experienced as
if through the eyes of the player’s avatar.

AAA computer game Games classified as AAA or triple A are those games with the
highest development and advertising budget. AAA games have an expectation of critical
acclaim, innovation, and financial success.

Voxel Volumetric pixel - the name given to an individual unit on a three-dimensional
grid.

Open World In a computer game, an open world refers to a game or game level that
allows the player to choose their approach and the order in which they explore the world.
The opposite to this would be a linear game.

Linear game A computer game that presents the player with challenges to be performed
in a specific order.
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Figure 3: A screen shot of the game in action.
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2 Background Research
At the onset of the project, a number of existing games that illustrate successful use of
procedural generation and dynamic di�culty adjustment were investigated.

2.1 Procedural Generation in Existing Games

Figure 4: From left to right: Elite1, Minecraft chunk generation2, and Super Hexagon3

Minecraft With over 19 million players, Minecraft may be the most commercially suc-
cessful example of procedural generation in games. Using procedural generation, Minecraft
creates an open world, composed of hundreds of thousands of voxels. The use of a seed
value, based on the player’s position, allows Minecraft to generate a persistent world.
The world generation algorithm (Persson, 2011), given the same seed value, will always
produce the same terrain. Terrain is the product of several layers of Perlin Noise (Perlin,
2002), a pseudo-random noise generation algorithm favoured for nature-inspired proce-
dural generation. The world is generated in 16x16x256 chunks as the player explores the
world.

Super Hexagon Super Hexagon (Cavanagh, 2013) is an example of a linear, arcade-
style computer game, which uses a more simple form of procedural generation to create
game content. Pre-made chunks of game content called ’gauntlets’ are arranged randomly.
Procedural generation in this case strikes a balance between the control over game design
that comes with handmade content, and the unpredictability that comes with PCG.

3
Image source: http://wikipedia.org

3
Image source: http://minecraft.gamepedia.com

3
Image source: http://superhexagon.com
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The Aaaaa! series of games utilises three distinct modules to implement PCG: se-
quencers, selectors, and mutators (Lambe, 2012). Sequencers create groups of objects,
for example, a tunnel composed of cubes, or a collection of power-ups placed along a sine
wave. Selectors return a subset of a sequencer, for example, all objects on the positive side
of a plane. Mutators are used to apply a change to an object. The pipeline for creating
a chunk of the game world is to first sequence a group of objects. Then, apply a mutator
to the resulting set of a selector applied to the sequence. For example:

1. Sequence a column of blocks along the player’s axis of movement.

2. Select every even numbered block.

3. Apply a mutation to this selection: orient each block sinusoidally over vertical
distance.

Small changes in mutator parameters can lead to significant changes in the game
content generated.

Figure 5: Di�erent parameters applied to the same sequencer-selector-mutator combina-
tion can produce distinct results.5

5
Image source: Lambe (2012)
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2.2 Dynamic Di�culty Adjustment in Existing Products
2.2.1 Flow

Csikszentmihalyi (2014) describes flow as a state of complete immersion in an activity,
resulting in a highly fulfilling sense of enjoyment. In order to enter flow, a person must
strike the ideal balance between challenge and their own skill level. A too high ratio of
challenge to abilities leads to anxiety, too low, and boredom occurs. The ’flow zone’ lies in
the middle of the two. Gamers are drawn to games that induce flow (Holt and Mitterer,
2000), which makes any technique that increase the likelihood of flow for a wide range
of players a worthwhile enterprise. Chen (2007) claims that, in order to induce flow in
as wide a range of players as possible, games must attempt to settle on the individual
player’s flow zone. Chen suggests dynamic di�culty adjustment, combined with giving
the player the ability to a�ect their game’s di�culty level, as a means to this end.

Figure 6: From left to right: flow zone factors; di�erent flow zones for di�erent players;
gameplay choices leading to an adaptation of the flow experience.7

Another way to adapt a game to the skill level of the player, and thus induce flow,
is to use machine learning techniques to adapt game parameters. Jennings-Teats et al.
(2010) propose the use of Ranking SVM to rank game content by di�culty, combined
with a dynamic model of the player’s current performance to determine game di�culty.

7
Image source: Jenova Chen
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3 Analysis
Problem analysis consisted of describing usage scenarios for the game, and identifying
the actors and their use cases in each scenario. As future evaluation would compare two
versions of the game to be used in A/B testing (Section 9), two usage scenarios were
identified. A description of each usage scenario follows below, followed by the use cases
that were constructed as a result of these scenarios.

3.1 Scenario 1: Timed gameplay
This scenario is the way the final product is intended to be played. A human player will
control a virtual spaceship with the keyboard. The ship will fly through a procedurally
generated environment, gaining more points the further they travel and for shooting
enemies, at a speed they can control by spending energy points on boosts. The game
ends when a timer reaches zero seconds. The player’s aim is to gain as many points as
possible in that time limit. The player will store points on the ship, and can choose at
any time to ‘cash in’ these points for more play time. The player will gain more points
the longer they can fly without hitting any obstacles. If the player does hit an obstacle,
any points that have not been cashed in will be lost permanently.

3.2 Scenario 2: Un-timed gameplay
This scenario plays similarly to the first scenario, but with the omission of any timer-based
gameplay. The di�culty will simply increase at a linear rate, and the player will get an
amount of points that is directly proportional to the amount of time they stayed alive.
The reason for the existence of this much simple mode is to measure the comparative
success of the dynamic di�culty adjustment through A/B testing.

3.3 Actors and Use Cases
In the case of a computer game, there exist several entities that are not users, but are
still considered to be actors. These entities monitor the state of, and interact with the
system. If a use case features in both usage scenarios it will be referred to as a common
use case, otherwise the specific scenario will be mentioned.

3.3.1 Player

Common use cases are as follows: change the position of the ship using the arrow keys;
lock on to and fire bullets at enemy ships using the x key; take damage in the event of
a collision with an obstacle. Scenario 1 specific use cases: spend energy points on speed
boosts; turn points into extra time.
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3.3.2 Level Generation Module

Generate a segment of the world; delete obsolete world segments based on the player’s
position; populate world segments with obstacles; tweak world segment population to fit
current di�culty level. There are no use cases that are specific to either usage scenario.

3.3.3 Enemy AI

Fly ahead of the player; shoot at the player if ahead; change position to avoid obstacles.

3.3.4 Dynamic Di�culty Module

Calculate parameters to be used by the level generation module, given the current di�-
culty level; in scenario 1, update the di�culty level based on the player’s actions.

4 Specification
The following specifications were derived from the use cases and scenarios.

4.1 Functional Requirements
• Path Generation: Given a direction, a distance, and a gradient, the system must be

able to generate a segment of the world, represented as a flight path that the player
follows.

• Path Concatenation: The system must be able to place new paths at the end of
other paths. The system must be able to create a new world segment and delete
obsolete ones as the player moves along, to ensure the player never runs out of
content.

• Path Content: The system must be able to populate a fixed radius around the path
with static obstacles, power-ups, and enemy ships.

– Obstacles: The system must be able to instantiate obstacles at a given density
(obstacles per volume in game units).

– Power-ups: Power-ups must be placed at regular intervals along the path.
When a player collides with a power-up the player’s energy level should be
incremented.

– Enemy Ships: Given a regular interval and number of enemies to instantiate,
enemy ships should be instantiated along the path at this interval.

• Path Movement: Objects must be able to move along the path at a constant rate
of game units per second.
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• Player Behaviour: The player must be able to change their relative position to the
path while moving along it using the keyboard. The player must follow the path at
a constant speed. The player must be able to fire bullets.

• Bullets: Bullets fired by the player must lock on to the nearest enemy ship. Upon
firing, the bullets must travel along the path faster than the player and hit the
enemy.

• Scoring Systems:

– Timed gameplay: The game must end when the timer runs to zero. The player
must be able to store points locally and convert them into permanent points and
more game time. The amount of points gained and the di�culty must increase
with the player’s distance travelled along the curve. The GUI must display the
time remaining, temporary score, final score, di�culty modifier, player speed,
and player energy level. If the player hits an obstacle the di�culty must drop
down a level.

– Un-timed gameplay: The score and di�culty level must increase with the
player’s distance travelled along the curve. The GUI must display the cur-
rent score and di�culty level.

• Enemy Ships: Must be able to fly ahead of the player. Once in front of the player en-
emy ships should fire bullets towards the player. Enemy ships must dodge obstacles
as well as possible while keeping their movement speed within a certain range.

4.2 Non-Functional Requirements
Non-functional requirements are qualities that the final system must fulfil, referring to
the results of functions and desired state of the system rather than desired functions.

• Path Results: The gradient of the path must remain smooth at all times. There
can be no sudden changes in the direction of the curve that would be jarring to the
player.

• Obstacles: It must be ensured that there is always a valid path the player can take
through the obstacles. Even at the highest di�culty level the game must not be
impossible. Obstacles must not overlap other obstacles, or power-ups.

• Path Movement: Objects that reach the end of a path must move seamlessly onto
the next path - if an object moves x units over the end of a path, it must start at x
units along from the start of the new path.

• Performance: The frame rate of the game must remain as consistent as possible.
The frame rate must not jump noticeably during gameplay, and must stay above 60
fps at all times on a mid-range system.

16



4.3 Extensions
These functional and non-functional requirements are not necessary to consider the project
complete, but could make the final product more desirable to the player.

• Multiple Path Population Algorithms: To avoid repetitive gameplay, construct mul-
tiple algorithms for populating path segments, and alternate these algorithms.

• Procedural Colour Scheme Generation: Generate a unique colour scheme from RGB
values for each world segment.

• Moving obstacles: Procedurally generate obstacles that move around the game world
in a way that is challenging to the player.

4.4 Revisions to Specification
Realisations during the development process prompted changes to the specification.

• Path Segments: Originally, the system was intended to generate a portion of the
game world given a position in the world as a seed value. However, when the game
changed from an open static world to a path-locked linear game 6.2 it made more
sense to generate it a segment at a time, as the order would be known and it was
less important for the world to be persistent.

• Runtime World Generation: Originally the ability to generate the world as the
player moves through it was a possible extension, rather than its current position
as a functional requirement. This change was also prompted by the focus of the
game changing from open world to linear. A static world could be generated at the
start of the game but for performance reasons that will be stated later it became
necessary to generate the world incrementally at runtime.
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5 System requirements
5.1 Libraries and Editors
The use of middle-ware to handle game rendering and physics could allow for more focus
on the procedural generation techniques themselves. An entirely distinct project could
have been devoted to constructing from scratch a 3D game engine, and while challenging,
does not represent any new directions in the field of Computer Science and would detract
from the main focus of the project. However, the advantages of middle-ware come at a
cost: if software is reliant on the functionality of middle-ware and the functionality is
lacking, there is no option other than to abandon the middle-ware and code from scratch.
The Unity3D engine was chosen for this product as it is widely used in the games industry
- 600 million gamers worldwide have the plug-in installed8 and if not installed is a small
download, so it can reasonably be expected that most of the audience will be able to play
the game with relative ease. Unity avoids constricting the user, as any function of the
engine can be re-written from scratch if necessary. Furthermore, the author’s familiarity
with the Unity engine it this a desirable choice. Unity also facilitates compilation to
multiple platforms: Windows, Mac OSX, Linux, and Web. This will allow the final
product to reach a wide variety of users in the evaluation phase 9.

5.2 Software Languages
Once Unity3D was decided on as the engine to be used in the game, it was necessary
to decide on a programming language. Unity supports three programming languages
natively: C#; UnityScript, an ECMAScript-inspired custom language; Boo, a .NET lan-
guage with a Python-like syntax. C# was chosen due to its syntactical similarity with
Java, a language the author was already familiar with.

8
Source https://unity3d.com/public-relations
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6 Design & Implementation
Design choices were made at the beginning of the project, but agile methodology left these
choices open to change. New choices were made throughout the process of implementation.
Broadly speaking these changes did not significantly alter the design from its original
state, but some previously designed and some implemented features were replaced with
more appropriate features. The main change during implementation was the shift from
a static world to an infinitely generating linear path. Taking this into consideration, in
this section I will explain design choices alongside their implementation, justifying initial
design choices with reference to the system specification and changes encountered during
the implementation.

6.1 Unity3D Class Architecture
One feature of Unity3D is a component architecture paradigm. In this paradigm, every
object that is present in the game world is an object of GameObject. For example, the
player will be a game object, as will the bullets they fire, the asteroids they dodge, or
enemy ships. Game objects store a Transform, an object which contains information
pertaining to world position, scale, and orientation, and a list of Components, classes that
derive from MonoBehaviour. Every time the game updates, every component in every
game object is updated. Components tend to contain data and functions that address
a specific concern of a game object, for example, a HitPoints component could derive
from MonoBehavior, and contains an int healthLevel and a method CheckHealthLevel()
that kills a game object if its health runs below zero. Using a component architecture
paradigm means that the player, the enemies, the bullets are not distinct classes - they
all derive GameObject and the way they behave is defined from their list of components.
A component-based approach can cut down on repeating code, and increase code clarity -
each component is focused on one behaviour, so functionality is naturally separated across
classes.

6.2 World Generation Style
It was necessary to identify the desired results of the world generation. One possibility
for the world generation style was a static, unchanging world, generated at the start of
the game. Another option would be to lock the player to a path and generate the game
on the fly as the player moves through it. Originally, a static world design was chosen,
as a persistent world could be more appealing to the player by o�ering more exploration
options. However, it was discovered during implementation that procedurally generating
smaller amounts of the world as the player moves through the world removed long initial
loading times, and was better suited to the dynamic di�culty adjustment, as segments
of the world could be generated with parameters adjusted by di�culty modifiers. It
was harder to tweak a static world post-generation than to generate at an appropriate
di�culty level as the player progresses.
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6.3 Path Representation
6.3.1 Design

Regardless of whether the game world was to be a static asteroid belt or an infinitely
generating linear level, it was necessary to have a means of representing a path in the
game world. Around this path, obstacles can be generated - this allows the world generator
the ability to choose a general shape, and fill in the details automatically. A static asteroid
belt would be represented as a looping set of paths, and an infinite level could be a a series
of connected paths.

Figure 7: The initial world design, a static asteroid belt.

One simple way to represent the path would be a series of points connected by straight
lines. This choice was ruled out, as in the non-functional requirements (section 4.2) a
requirement was that the gradient of the path must remain smooth at all times, with
no sudden changes in direction. The gradient of of the path would change at connecting
points. A parametric representation of a curve, such as a Bézier curve, could fulfil this
requirement. Through manipulation of the end points of curves, gradient continuity
could be maintained. Equally, parametric representations of curves have performance
advantages: Bézier curves were chosen as three-dimensional curves of arbitrary lengths
can be generated from a set of three-dimensional vectors and a value from zero to one,
where zero is the start of the curve and one is the end. Points on the curve can be
generated to as high a precision as the input parameter is capable of. It was necessary
to decide what degree Bézier curve would be used to represent the path. Cubic Bézier
curves were chosen as they had the best balance of performance and smoothness. This
design decision is explained in more detail in section 6.3.2.

6.3.2 Implementation

Cubic Bézier curves were chosen to represent the flight path. A Bézier curve of n degrees
can be defined recursively as a linear interpolation between points in two Bézier curves
of n ≠ 1 degrees: for example, a point on a cubic Bézier curve is given by a linear
interpolation between two points on two quadratic Bézier curves, which are turn given by
a linear interpolation between two points on on two linear curves. A linear Bézier curve
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is represented by two points, P0 and P1, and a point on the curve is simply generated by
linearly interpolating between P0 and P1. The ‘curve’ is given by

B(t) = P0 + t(P1 ≠ P0)
and should result in a straight line starting at P0 and ending at P1.

Figure 8: Linear Bézier curve with the point at t = 0.5.

A quadratic Bézier curve is represented by three vectors: start and end points P0 and
P2, and an intermediate control point P1. To calculate a point on a quadratic Bézier curve
at t, first calculate the points at t on two linear Bézier curves: C0 with start point P0
and end point P1, and C1 with start point P1 and end point P2. Then linearly interpolate
between these two points. The curve for a quadratic Bézier curve is given by

B(t) = (1 ≠ t)((1 ≠ t)P0 + tP1) + t((1 ≠ t)P1 + tP2)
or rewritten into a more complex form

B(t) = (1 ≠ t)2P0 + 2(1 ≠ t)tP1 + t2P2

and should look like a line being stretched towards P2.

Figure 9: Quadratic Bézier curve with the point at t = 0.5 marked and straight lines
indicating C0 and C1.

Cubic Bézier curves are simply the next level of interpolation: curves are represented
by start and end points P0 and P3 with two control points P1 and P2. To calculate a point
on a cubic Bézier curve calculate the points at t on two quadratic Bézier curves: curve
C0 with points P0, P1, and P2, and curve C2 with points P1, P2, and P3. The curve for a
cubic Bézier curve is given by
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B(t) = (1 ≠ t)3P0 + 3(1 ≠ t)2tP1 + 3(1 ≠ t)2P2 + t3P3

and should look like a line being stretched towards P1 and P2.

Figure 10: Cubic Bézier curve with the point at t = 0.5 marked and straight lines indi-
cating C0 and C1.

The first derivative of the curve is given by

BÕ(t) = 3(1 ≠ t)2(P1 ≠ P0) + 6(1 ≠ t)t(P2 ≠ P1) + 3t2(P3 ≠ P2)

and equals the gradient of the tangent to the curve. This comes in useful when objects
are travelling along the curve, as they need to face the direction of travel. Cubic Bézier
curves were chosen over quadratic curves because they are C(2) continuous. Generally,
a curve is considered C(n) continuous if all its derivatives up to n match across curve
segments. The application of this is that the rate of change of change of gradient in
a C(2) continuous curve is continuous. Continuousness over C(2) was not needed and
would only increase the number of interpolations needed, so C(2) was picked as a balance
between smoothness and performance.

Figure 11: C(1) and C(2) continuity across two curve segments9

A static class was created to store functions, that given 0 <= t <= 1 and four points
P0, P1, P2, P3, could return a position on a curve, the length of a curve, and the first
derivative at that point. The length of a Bézier curve can be approximated by getting
the combined distances between a set of points along the curve.

9
Image Source: http://research.cs.wisc.edu/graphics/Courses/559-f2004/docs/cs559-splines.pdf
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Figure 12: The path that approximate curve length is calculated from.

6.3.3 Asteroid Belt Shapes

To generate a randomly-shaped unpopulated asteroid belt, generate a random polygon by
rotating around an origin and placing points at random distances, then linking the points
up and make each edge a Bézier curve. To make the curve continuous across the loop it
is necessary to implement Bézier splines.

Data: Minimum and maximum distance from centre
Origin (three dimensional vector)
Number of edges: n
Result: A random polygon
Initial bearing is 0¶;
while bearing < 360¶ do

Add a point along the bearing from the origin, at a random distance between
minimum and maximum distance;
Bearing + = 360/n;

end
forall the Points do

if This is the last point in the list then
Make a new Bézier curve: P0 = this point, P3 = first point in list;

else
Make a new Bézier curve: P0 = this point, P3 = next point in list;

end
end

Algorithm 1: Random polygon generation

Figure 13: Random polygon generation results
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6.4 Bézier Splines
A spline is a set of multiple curve functions. Curve n’s start point should be the same as
curve (n ≠ 1)’s end point - this shared point is known as a knot.

6.4.1 Smoothness across knots

Smoothness across knots is an essential quality of splines. If Bézier curve C1 is followed
by curve C2, the following conditions must be true to ensure smoothness across the knot:

1. The start and end points are equal to the knot: C1’s P3 = C2’s P0

2. The knot lies on the line connecting C1’s P2 and C2’s P1

Condition one should be satisfied, as the start point of the new curve is always set to
the end of the first curve. To enforce condition 2, get the vector V as C1’s P3 ≠ C1.P2.
Place C2’s P3 at C1’s P3 + V , mirroring the points over the knot.

Figure 14: Random polygons with smoothness conditions unenforced (left) and enforced
(right).

6.4.2 Spline Followers

The player, enemies, and the player’s bullets all need to be able to travel along the spline.
One possibility was to give entities that follow the spline free movement, and if they stray
too far from the spline, rotate them back towards it. The further away from the spline
the entity is, the more forceful the rotation should be. However during playtesting this
turned out to be frustrating - users did not like having control taken away from them.
Instead, entities moved directly along the spline by incrementing their t value. The entity’s
position on the spline was subsequently calculated as B(t), with the P values being the
points of the occupied curve. Spline followers also have a two-dimensional vector called
an o�set (Fig. 15), which determine their position within a plane with normal BÕ(t).
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Figure 15: A spline follower’s position is B(t)+ o�set (red arrow) along the plane with
normal BÕ(t) (represented by a grey circle)

Objects that need to move along the spline (enemies, the player, player bullets, the
camera) are given a component that derives from SplineFollower. Every frame, spline
followers move along the curve by ”t = s/l1, where s = game distance units travelled
per second and l1 is the length of the occupied curve. Spline followers need to move at
a constant speed, even across curve segments, but curve segments do not necessarily all
have the same length as each other. Therefore, if the incremented t is over one, the spline
follower has left the current curve segment and t must be adjusted taking into account
the next curve segment’s length. First, the ratio r of how far over the curve the new t
value is calculated as (t ≠ 1)/”t. The distance d the spline follower has to move along the
next curve segment with length l2 is given by r ú s. Thus, the new t value is corrected to
d/l2. UML diagrams for spline followers can be found in the appendix.

6.4.3 Runtime Spline Generation

The spline that the player follows consists of three curves: C1, the curve the player is
currently on, C2, the next curve in the spline, and C0, the curve before the current curve.
When the player reaches the end of C1, the curves are ‘shifted down’ by one: C1’s curve
data (the set of four three-dimensional vectors) moves into C0, C2 to C1, and at C2 a
new curve is generated with C1’s end point as its start point. Smoothness conditions are
enforced (section 6.4.1). All spline followers other than the player have their curve index
decremented by one to keep them in the same position. The class InfiniteSpline holds
the three curves and updates the curve when the player passes o� the edge of the current
curve. When the curves update InfiniteSpline also updates the curve index of every spline
follower.
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6.4.4 Getting the Player’s Position on the Spline

While the player still had free movement, a way of detecting what their t value on the
current curve was needed, as when that value goes over 1, a new curve segment should be
generated. When the player’s position on the spline was set directly, there was no point in
calculating this, but as this was not an insignificant problem to solve it will be described
here. Binary search was performed on the curve - first, the curve was bisected with a plane,
with a point B(0.5) and normal BÕ(0.5). Depending on whether the player’s position is
on the positive or negative side of the plane, the bisection runs again on the curve from
t = 0.5 to t = 1 or t = 0 to t = 0.5, and runs a number of times given as a parameter to
the function. Experimentation revealed that 16 was the point of diminishing returns for
curves of length 2000, the length picked to be used in game. This was a relatively cheap
operation, but one optimisation technique would be to take into account past results. As
spline followers all travel in the positive direction, if a spline follower is on the positive
side of a plane, it can be assumed to always be on the positive side and this does not need
to be recalculated. This method was implemented and added to the Bézier static class.

Figure 16: Player’s (pink dot) t value on the curve (white circle).

6.5 Artificial Intelligence
6.5.1 Design

Enemies need a way to avoid obstacles while traversing the spline. One option is to use
a search algorithm to construct a path through the obstacles, follow it, and calculate a
new path to follow when the end of that path is reached. One pathfinding algorithm
considered was A* search, which has the advantage of guaranteeing a valid path through
the obstacles. One disadvantage however is that A* search would have to be performed as
many times are there are current instances of enemies. It would be possible to calculate
one or a fixed number of paths that all the enemies could follow, but if enemies were to
overlap they would collide with each other and not move in a way that is satisfying to the
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player. Equally, it is hard to reconcile A* search with a moving game world (a possible
extension in section 4.3) as search would have to be recalculated whenever an obstacle
intersected the path. It became necessary to abandon path finding and adopt a method
that only looks at immediate obstacles. Enemies will look ahead of their movement
direction using virtual depth sensors, and adjust their position based on whether they are
about to run into an obstacle. Another softer advantage of this approach is that enemies
will behave much like an actual player-controlled ship, as they are reacting to what they
can see, and do not have the omniscience that comes with pathfinding algorithms like A*
search. In this case, non-perfect pathfinding is actually an advantage.

6.5.2 Implementation

The raycasting feature of Unity3D’s phsyics library was used for this functionality. Given
an origin, a direction, and a distance, a raycast returns true if it collides with any game
object that has collisions enabled and optionally a list of all said game objects. This list
was not needed, as the enemies had to dodge anything they could collide with. According
to their SplineFollower component enemies will traverse the spline at the same speed
as the player, unless they are behind the player in which case they will move slightly
faster in order to catch up. It is within the O�setController that obstacle dodging occurs.
Chenell (2014) outlines a two-dimensional version of this obstacle avoidance using five
rays, and upgrading to three-dimensions was a matter of adding rays in the z direction.
Each enemy has nine rays which are cast every frame: one going straight ahead, and four
pairs of directional raycasts (up, down, left, and right). For each directional raycast there
is a long-range version as well as a shorter-range version, to prevent enemies from moving
sideways into obstacles they cannot see.

Figure 17: Top down diagram of enemy raycasting.

If a ray cast to the left returns true, the enemy is heading towards an obstacle and
adjusts its o�set to the right. A right ray returning true sends the enemy to the left, up
to down, and down to up. If just straight ahead, both left and right, or both up and down
are true, the enemy has to decide which direction to move, as all directions are equally
valid. Enemies are assigned a random desired o�set when they are instantiated, which is
an o�set they attempt to return to if they are not due to collide with any obstacles. In
the case the enemies have to make a decision which way to dodge, they attempt to move
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in the direction of that desired o�set. This desired o�set can also be set to be the o�set of
the player to make enemies fly in front of the player. Enemies also begin dodging at a low
speed, and the longer they are due to collide with an obstacle, the faster their dodging
becomes. This means enemies will only move as fast as they have to to avoid obstacles
and will not twitch violently.

Figure 18: Enemy AI raycasts. Rays that hit colliders are rendered red in debug mode.
In this case the downward ray is colliding and so the enemy moves upwards.

6.5.3 Limitations and extensions

One issue encountered was that an enemy that was constantly dodging in the direction
of their desired o�set would reach the desired o�set and then not be able to move o� it.
A boolean stillColliding was used to keep track of whether the enemy had been dodging
last frame, and if it was, it would maintain its dodge direction. This way enemies would
move past their desired o�set and keep going until they were safe, not just charge head-on
into the obstacles. Another issue is that in areas with a high density of obstacles, enemies
are constantly dodging. If the enemies were attempting to head towards the player it
was unlikely this would ever happen. Fortunately, the player is forced to move close to
the enemies in order to shoot them anyway. One possible extension to enemy behaviour
would have been to set the enemies’ desired o�set points in such a way that makes them
fly in a formation.

6.6 World Population
The world population design changed more during implementation than any other part
of the design. Once a path representation is established, it is necessary to populate
the path with game content. As stated in the non-functional requirements (section 4.2)
obstacles must not overlap other obstacles. The original design choice was to naively drop
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obstacles in the game world, and afterwards, resolve any overlapping obstacles. At first, it
was decided to use Unity’s in-built physics engine to move the obstacles apart from each
other, but it was discovered that Unity’s physics engine does not necessarily result in a
stable placement of the obstacles. One simple solution would be to let Unity’s collision
resolution run for a number of frames and then freeze the results. In practise, however,
Unity’s physics engine is linked to frame progression, so the player would see a number
of extremely slow frames before the game began. A custom sphere collision resolution
system was designed and prototyped.

6.6.1 Sphere Collision Resolution

Asteroids were placed at random points around the spline, without checking if they over-
lapped. An object of class Sphere was created at the midpoint of every asteroid, with
a radius that encompassed the extents of the asteroid model. Once all spheres were in
place, collision resolution was performed. Two spheres with radii R1 and R2 and centers
P1 and P2 are overlapping if:

||≠æ
AB|| > R1 + R2

If two spheres are colliding, the sphere that is further away from the spline is moved to
the point at which ||≠æ

AB|| = R1 + R2. Once the collisions are resolved the asteroid models
themselves are placed in the world at the resting point of the sphere, unless the sphere
does not resolve, in which case it is abandoned.

Figure 19: Initial sphere placement, spheres after collision, and final asteroid placement.
Blue spheres are colliding with other spheres, red spheres have completed collision reso-
lution and are stable.

A significant delay during the implementation of sphere collision resolution occurred
as the result of isolated vertices in the open source asteroid models used as placeholder
art. An isolated vertex is a vertex that is not connected to an edge, and can be the result
of an error during the modelling process. The size of the model was used to calculate
the size of its sphere collision object, but, as the radius of the model was calculated as
the distance between the centre of the model and the furthest vertex from the centre, a
stray vertex could significantly alter the estimated model size. This was a di�cult error
to identify as isolated vertices are invisible.

In practise during implementation, however, sphere collision resolution at this scale
was discovered to be prohibitively slow. If collision detection is run on every pair of
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spheres it has a complexity of O(n2). Even limiting the collision detection to the closest
n spheres was ine�ective - an n value large enough to examine all collisions was too
slow to be viable. With hundreds of asteroids being placed along the spline, it became
necessary to develop a world population system that would not result in any collisions
that needed to be resolved. To this end ‘slices’ of the path with no colliding obstacles
were generated and the obstacles within these slices were spread out along the curve.
This design lent itself well to dynamic di�culty adjustment, as slices could be spread out
less to increase the density and hence the di�culty. This design is analogous to Aaaaa! ’s
sequencer-selector-mutator pipeline. First, the slice is sequenced by placing obstacles in
a non-overlapping layout. Second, when the slice is placed on the spline, a proportion
of the obstacles are selected to toggle on - the higher the di�culty, the more obstacles
are toggled on, increasing the obstacle density. Thirdly, mutation occurs - obstacles are
moved along the curve in the positive or negative direction, spreading them out along the
curve. The higher the di�culty, the less the obstacles are spread, again increasing the
obstacle density.

Figure 20: A slice of the path consists of a rough circle, tightly packed with non-
overlapping obstacles.

6.7 Packing Circles with Rectangles
The desired results of the slice generation is a collection of non-overlapping rectangles
tiled in a circle area with a minimum amount of gaps. One way of arriving at this result
would be to start with a square, divide it horizontally into strips and divide these strips
vertically into rectangles, and then remove any resulting rectangles with a high enough
percentage of their area outside the circle.

Figure 21: Rectangle packing as a result of bisection.
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This is a simple way of approximating the desired results, and guarantees there will
be no overlapping rectangles or gaps between rectangles. The downside of this method
is the results are too predictable, as squares are aligned within their strips. A method
was conceived wherein the circle would be built one rectangle at a time. To minimise
gaps between rectangles, rectangles should be placed at points where the corner of one
rectangle meets another rectangle’s edge. An advantage of this method is that rectangles
of a variety of sizes can be placed in the circle. A brief overview of this algorithm is to
start with two touching rectangles and follow this loop:

1. Identify valid places to place a rectangle.

2. If there are no valid places, exit the loop.

3. Place a rectangle at the valid point that is closest to the center.

4. Set the rectangle’s width and height to a random values between a pre-determined
minimum and maximum distance.

Figure 22: Step by step rectangle packing. Red dots are valid points, the green dot is the
closest valid point.

This design appeared to be relatively simple but during implementation a number of
specific cases were identified through white box testing (section 7.1). This necessitated
some changes to the design. In some cases rectangles have to be resized: if a rectangle
is placed, but leaves a gap that is too small for another rectangle of minimum size to be
placed, it should be extended to fill that gap; if a rectangle is placed, and overlaps another
rectangle, it should be shrunk to the correct size.

Figure 23: Cases in which the size of the rectangle being added (red) needs to be changed.
From left to right: overlapping, extension needed, and fixed.
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Another special case is the case in which the corner of one rectangle has the same
position of another rectangle’s corner. In this case, it is possible to place two rectangles
at this point.

Figure 24: Two corners touching results in two valid rectangle placement points (marked
in green)

The final implemented design of the algorithm is as follows:

1. Place a rectangle, and a second rectangle with a corner on one of the first rectangle’s
edges.

2. Identify the initial valid points to place rectangles (section 6.7.1).

3. Perform this loop until there are no valid points to place rectangles:

(a) From the list of valid points (section 6.7.1, get the point that is closest to the
centre of the circle.

(b) Place a new rectangle at this point.
(c) Extend or shrink the new rectangle appropriately (section 6.7.3).
(d) Identify any new valid points.
(e) Remove any invalid points (section 6.7.4) from the new valid points.
(f) Add new valid points to the list of known valid points.

4. For every rectangle, create a three-dimensional obstacle that fills the rectangle.

6.7.1 Identifying Valid Points

Points at which the corner of one rectangle intersects the edge of another rectangle are
potentially valid placement points. Intersection points can only be valid placement points
if they are on the outside of the existing group of rectangles. One way to identify which
placement points are valid and which are invalid would be to generate all potential points,
and cull the ones that are touching three or more rectangles. Another way would be to
examine the newly added rectangle, and add to a persistent list of valid placement points.
The advantage of this method is that it is not necessary to recalculate the placement
point list every time a new rectangle is added.
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Figure 25: Potentially valid placement points at one step of the algorithm. Valid points
are marked in green, invalid in red.

6.7.2 Corner Representation

In order to determine where to place a rectangle, placement points have to have an asso-
ciated corner type. This corner type refers to which corner of the rectangle will be placed
at the placement point. The corner type is determined by the two intersecting rectangles:
for example, a corner of type topleft touching the right edge of another rectangle will
result in a placement point with corner type bottomleft.

First, the algorithm examines the new rectangle’s corners: which corners are touching
the edges of an existing rectangle? Exact corner matches are checked for first. For each
of the old rectangles’ corners, and for each of the new cube’s corners, if the positions are
equal, the corners match. As positions were represented by floats, equality checking had
to be changed to checking if the distance between the two points was less than 0.1. This
value was small enough not to give false positives and large enough to catch all ’equalities’.
If it is the case that the two corners have the same position, the algorithm will place two
rectangle placement points. The type of placement point is determined by the types of
the two corners that are touching.

Figure 26: Examples of corner matches and the resulting placement point types.

If a corner does not exactly match another corner, the algorithm checks whether it is
touching the edge of another rectangle. If it is, a potential placement point can be added
at the intersection. Again, the type of placement point depends on the corner type that
is touching the edge and the type of the edge it is touching.

The algorithm repeats, examining all the corners of the set of existing rectangles:
which corners are touching the edges of the new rectangle? In this case, the algorithm
does not check for exact corner matches, to avoid duplicate placement points.
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Figure 27: Examples of edge matches and the resulting placement point types.

6.7.3 Updating Rectangle Shape

Rectangle’s shapes need to be updated if they can expand or have to shrink to fill a gap.
To update the rectangle’s shape, check for each edge of the rectangle R1 with bottom left
corner (l1, b1) and top right corner (r1, t1) : is the edge overlapping another rectangle R2
with bottom left corner (l2, b2) and top right corner (r2, t2)? To resolve the right edge,
first check that the edge lies within R2’s top and bottom edges

(b1 > b2 · b1 < t2)||(t1 > b2 · t1 < t2)

then the right edge is overlapping if

l1 < l2 · r1 > l1

and the right edge needs to be extended if

|r1 ≠ l2| < w · r1 < l2

where w is the minimum valid width for a rectangle. The potential new edge values are
stored in a list, and only the value that is closest to the centre is used as the final edge
value.

6.7.4 Identifying Invalid Points

During rectangle placement, if an invalid point is detected for any reason, it can be added
to a list of known invalid points. These invalid points are culled from the list of new valid
points before it is added to the list of known valid points. If changing a rectangle’s shape
causes it to obscure a previously valid corner, the obscured corner is added to the invalid
points list. Also, the point that the new rectangle is created at is added to this list, so
rectangles are not placed on the same point more than once.

6.8 Optimisation
The large amounts of objects the game would be creating at runtime neces-
sitated some optimisation. One method considered was distance culling - simply
not rendering objects that are too far away from the player to be considered important.
However, this creates a ‘popping in’ e�ect where obstacles seem to appear out of thin
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air, which visually is not desirable. Equally it does not actually stop objects from being
created, just hides them from the player’s view. Instead, a system of object pooling was
decided upon - the game world will consist of a small amount of objects (a pool), created
when the game loads, and being activated when needed and deactivated when obsolete.
The disadvantage of this method is the increased initial loading time, but should ensure a
more consistent frame rate. Object pooling also lends itself well to the world population
design choice (section 6.2) as slices can be pre-generated and given custom configurations
when they are placed on the curve, rather than generating a new slice every time it is
needed.

For every object that needed to be pooled, a class deriving from ObjectPool
was created. Any object that was going to be created and destroyed frequently was
pooled: enemies, slices, bullets, power-ups and the player’s bullets. At construction,
ObjectPools create a number of game objects, given as a parameter, and add them to a
list. Classes that derive from ObjectPool override CreateGameObject() with the specific
code required to create their game object. When any other class wants to create an
instance of a game object it calls GetPooledObject(), which searches through the list for
an inactive game object and returns it if found, else, returns null. If an ObjectPool has
its willGrow value as true, and an inactive game object is not found, at this point it will
expand the list and create a new game object and return that.

6.8.1 Spline Object Pools

For any object that needed to be placed on the spline, an object of class
SplineObjectPool was created. SplineObjectPools are given a separation value s,
specifying the distance along the spline in between objects, and an ObjectPool to fetch
these objects from. Given the player’s t value tp on the current curve, the SplineObjectPool
looks ahead on the curve at ts = tp + d/l where d is the distance to look ahead, and l is
the length of the current curve. If t goes over one, the remainder is adjusted in the same
way spline followers move over curve segments (Section 6.4.2). SplineObjectPools contain
a field tl to keep track of the last t value at which an object was placed. If ts > tl + s
objects need to be separated by, an object is placed and the last t value is updated.
Objects behind the player by a certain amount are deactivated, freeing them up to be
pooled again. Also, in the timed mode of the game, when the player hits an obstacle, tl

is reset to zero after the di�culty value is updated, forcing the spline to regenerate at an
appropriate di�culty level immediately. UML diagrams for Spline Object Pools can be
found in the appendix.

6.9 Dynamic Di�culty Adjustment
There exist already several machine-learning techniques for tweaking di�culty param-

eters in computer games, which have been shown to e�ectively settle on suitable param-
eters. These algorithms are mostly designed as an automation technique for playtesting
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before a game is released, and the specifications stated that the game should adjust pa-
rameters while the game is running. Therefore, a similar technique to the one employed
in Jenova Chen’s flOw was adopted, as it allows for a relatively quick settling on the ap-
propriate di�culty level through player choice. The di�culty manager contains a method
to generate an appropriate value for each di�culty dependent parameter of the proce-
dural generation. For example, for obstacle density at di�culty t, with a minimum and
maxmimum density d1 and d2, the di�culty manager returns

d1 + d(d2 ≠ d1)

Di�cultyManager also returns text relating to the di�culty for the GUI to represent.

Figure 28: Level generation for a player of the lowest skill level.

Figure 29: Level generation for a player of the highest di�culty level features higher
obstacle density and enemy placement.

An abstract class ScoreManager was used, and di�erent classes can derive from Score-
Manager to create di�erent scoring systems. One of these scoring systems updated the
di�culty relative to the distance along the curve the player travelled, and decremented
by 0.1 if the player failed (hit an asteroid or an enemy bullet). The other simply in-
creased the di�culty linearly over time. The ability to use multiple scoring systems came
in useful during evaluation, as di�erent scoring systems could be compared to evaluate
their relative success. ScoreManagers also return text representing the score that the GUI
displays.

Three di�erent di�culty progression functions were implemented. A static class Dif-
ficultyProgression was used to hold these functions. By switching out the di�culty pro-
gression function the di�culty could progress linearly, exponentially, or following a square
root graph, and the game was playtested with a variety of functions to identify the most
appropriate. Linear progression emerged as the most appropriate of the three.
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7 Testing Strategy
The project testing strategy was twofold: white box testing throughout development, and
black box testing primarily at the end of development.

7.1 White Box Testing
White box testing examines specific aspects of the internal structure and behaviour of
software. The primary white box testing strategy used was smoke testing.

Smoke testing, or sanity testing, aims to confirm that high-level functions
of software work. These functions are derived from the specification. To confirm
functionality, a static class DebugUtil was created with a method Assert. Test methods
to check if requirements were being fulfilled were designed, and their results passed into
Assert. If the test method returned false, Assert would throw an exception and a suitable
error message. Examples of tests include a test to confirm no obstacles were overlapping
each other, or a test to ensure the gradient of the Bézier spline was consistent across curve
segments. When the project failed to pass smoke tests, static testing and, in some cases,
visual debugging, was used to identify and fix the problem. Static testing tests software
without running it and primarily consisted of manual code reviews.

Visual representations of the state of algorithms proved to be a useful testing
approach. The visual focus of the project lent itself well to informal visual testing.
Visual testing consisted of editing the Unity editor to display information about the state
of the program, and moving through code execution one instance of the game loop at
a time. For example, when the square-packing algorithm was placing supposedly valid
square placement points in invalid locations, displaying all the points in their position
in-game made it much easier to identify what cases were causing errors.

7.2 Black Box Testing
Black box testing compares the behaviour of the program as it would be experienced by
an end user, rather than examining the internal structure or behaviour. The behaviour of
the project was compared directly to the specification (section 4). The author performed
actions in game and checked that the system responded in the expected manner, according
to the specification. For example, the player flew into obstacles in game. If the bonus
value in the GUI decremented and the player lost all their current points, the test was
passed.
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8 Project Management
8.1 Software Engineering
An agile software development methodology was chosen as the software engineering solu-
tion for this project. Agile development was chosen for its ability to adapt to changing
requirements during development (Beedle et al., 2001). This methodology is particularly
e�ective for computer game development, as features often have to be implemented be-
fore their appropriateness can be evaluated. One example of how the agile methodology
proved useful during development is the shift from an open world to a linear, infinitely
generating level.

Iterative development. The project naturally split into three major components: level
generation, game content, and dynamic di�culty adjustment. The separation of these
components lent itself well to iterative development, as it was possible to work on each
component independently of the other two. Furthermore, the components lead into each
other: first create the game content, then generate it procedurally, then model the player
experience and feed that value back into the procedural generation. Due to their relatively
large scope, level generation and game content were split into multiple iterations. Iterative
development consists of a cycle, over a period of around a month or less, consisting of four
phases: planning, which consists of identifying functional requirements and risks; design,
the development of solutions to satisfy the requirements; implementation of the design
with frequent tests; integrating the implementation with the rest of the code base.

8.2 Risk Management
Time management risks. Reconciling the project workload with other modules could
prove to be di�cult, especially in the second term, credit split weighted heavily on the
second term. In order to mitigate this risk, minimal functionality was aimed to be com-
plete by the start of the second term. In addition to this a project schedule was designed
during the project proposal phase (Appendix A) and all attempts were made to stick to
this.

Third party risks. Reliance on the Unity engine introduced the risk of potential bugs
introduced with newly released updates. To this end, it was decided to use only the known
stable Unity 4.6 and only update to Unity 5 once any game-breaking issues were resolved.
A backup of the project was created before upgrading to Unity 5.

Project requirement evolution. Changes to the functional and non-functional re-
quirements could result in a significant time delay. In order to mitigate this risk, agile
methodology was adopted.
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9 Evaluation
9.1 Strategy
User playtesting was used for product evaluation. Areas evaluated were: the
success of the dynamic di�culty adjustment; the player’s engagement with the game
itself; any unidentified bugs that resulted from user input. A playable version of the
game was distributed online and advertised on a variety of game and game development
communities, as well as social networks, over a period of two weeks. Two versions of
the game were supplied: one version featured the dynamic di�culty adjustment; one
version simply increased the di�culty linearly with time. Play testers were required to
play both versions of the game and then fill out a brief anonymous questionnaire. The
questionnaire evaluated, as a value of one to five, the participant’s agreement with the
following statements:

1. The timed version of the game better fit my skill level than the non-timed version
of the game.

2. The timed version of the game was more fun than the non-timed version of the
game.

3. When I died in the timed version of the game, I felt that it was justified.

4. When I died in the non-timed version of the game, I felt that it was justified.

The dynamic di�culty adjustment version of the game was referred to as the ‘timed’
version of the game to avoid confusing the playtester. The aim of the dynamic di�culty
adjustment was to better fit the di�culty of the game to the skill level of the player, so
the player was asked directly if they believed this was the case. However, play testers
might not necessarily be aware that this is the aim of the dynamic di�culty adjustment,
so a more general quantification of ‘fun’ was included as well. Players were asked if they
felt their deaths were justified, in order to quantify how fair the game felt, and whether
the player was just dying as a result of bad controls, in order to evaluate the success of the
game content. Testers were also presented with a text box to submit general feedback.
The full questionnaire can be found in Appendix B.

9.2 Results
By the end of the testing period, around 150 players had participated in
playtesting. Around 25 of those playtesters were referred from the author’s Facebook
page, so fortunately the majority of playtesters were less biased in the game’s favour
and could give honest feedback. Hosting the game on the popular website Itch.io meant
players surfing the ‘new submissions’ page of the site could discover the game on their own,
but the largest portion of tra�c came from advertising the game on content aggregation
website Reddit.
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Figure 30: Number of players vs. date over the evaluation period.

Questionnaire answers were averaged to gain an agreement metric for each
question. Resulting values ranged from one to five. Any value above three was con-
sidered to be enough agreement to be successful. It was predicted that playtesters would
agree that the timed version of the game would be more fun, and better fit their skill level,
and that players would feel the timed version of the game was more fair. The resulting
values were:

1. The timed version of the game better fit my skill level than the non-timed version
of the game: 3.25

2. The timed version of the game was more fun than the non-timed version of the
game: 3.64

3. When I died in the timed version of the game, I felt that it was justified: 3.55

4. When I died in the non-timed version of the game, I felt that it was justified: 3.72

The results confirmed the prediction that players found the dynamic di�culty ad-
justment more engaging than the control version of the game. It was not expected that
testers would find the non-timed version of the game more fair than the timed version.
One possible reason for this discrepancy could be communication of the game mechanics
to the player. In the general feedback results, 30% of the participants reported that they
did not understand how the timed version of the game’s score was calculated.
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10 Discussion
The project achieved its minimum functional and non-functional requirements.
However, none of the extension requirements were met. While this did not make the
project unsuccessful, I am not completely satisfied with the amount of variety in the level
generation. I would have liked to employ a wider variety of obstacle placement algorithms
to create more interesting groups of obstacles such as tunnels, slaloms, or other more
visually interesting areas. Obstacles could have been placed around pre-defined player
paths within the major flight path, and flight path gradient could have been increased
with di�culty to create a more challenging experience.

One of the main problems encountered during development was the lack of
a clear desired result for the procedural generation. While this allowed me to
adopt an agile methodology and experiment with a variety of level generation techniques,
and while most of the work done (spline representation, spline following) during this
experimentation eventually found use in the final product, I feel like without this wasted
time the final product could have been more substantial.

Working with an existing game rather than developing a bespoke game could
have clarified the project. I could have adopted a similar approach to Pedersen
et al. and worked with an existing game. Attempting to procedurally generate towards a
known result rather than developing the game and generation in parallel would have given
me a clearer goal. Furthermore, working with an existing game would have simply given
me more time to focus on procedural generation and dynamic di�culty adjustment, the
main focuses of this project. While the use of the Unity engine certainly helped reduce
the workload of developing the game content, this was not an area of the project that I
consider as significant in terms of technical di�culty as PCG or DDA, but still required a
significant time investment. If I did the project again, I would decide on a world generation
style within the first two weeks of the project’s inception, and stick to it, or possibly pick
an open source version of a well-established video game and modify that with my own
procedural generation. Additionally, I would focus less on game aesthetics as issues with
stray vertices were the cause of frustrating delays and of no technical significance.

I was pleased with the results of the project evaluation. Evaluation supported
the hypothesis that dynamic di�culty adjustment could make a game more appealing to
the player and better fit their skill level. If I had the opportunity to redo the evaluation,
I would ask the player how familiar they were with computer games in general. Submit-
ting the game mainly to games development communities was the best way of getting
well informed feedback from genuinely interested playtesters, but, it limited the testing
audience mainly to players who were already familiar with the computer game medium.
It could have been more valuable to test the game with a variety of player skill levels,
but, it is easier to convince users who are familiar with games to playtest a game.
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Possible extensions The level generation could possibly have been expanded to gen-
erate a representation of an audio stream, as it is already possible to place obstacles along
the spline at a known time value. If an audio stream could be analysed to identify the
time value of beats, these could fairly easily be translated into t values along the curve.
I would also have liked to experiment with more di�culty progression functions, possi-
bly developing a di�culty progression editor that could be used by game designers to
hand craft custom di�culty progression functions. Given more time, I would like to use
machine learning to quicker settle on an appropriate di�culty level.

Possible future applications As established in section 1.2, advancements in the field
of computer games can be applied to other domains through the use of gamification. I
would especially be interested to see dynamic di�culty adjustment and procedural content
generation applied to the field of education. In the same way that game players nowadays
have a wide range of skill levels and backgrounds, children in school and all people in
education learn at di�erent paces and respond di�erently to a variety of teaching methods
(Christensen et al., 2008). To be able to adapt a child’s learning process to their individual
learning pace could cause a marked improvement in education quality. Furthermore, the
field of education is suited to dynamic di�culty adjustment, given a large set of data in
the form of grades, if the data can be collected and analysed correctly an accurate metric
of ability could be generated.

11 Conclusion
The project achieved its aims and all the minimum functional and non-functional re-
quirements. The system generated a smooth and consistent flight path and moved the
player along it. The system successfully populated the flight path with obstacles in a way
that was fun and interesting to the player, and never created impossible challenges. The
dynamic di�culty adjustment successfully tailored the level generation to each player’s
individual skill level. Overall the game was well received during evaluation, and was
played by a large number of individuals. I consider the project a success.
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A Project Schedule
Week Starts Plan and Important Dates
06/10/2014 Read around the subject, examine methods employed by existing

videogames, produce some small prototypes to test ideas and pos-
sibly adapt the functionality specification. Make any necessary
changes to Project Proposal and finish by 11/10/2014.

13/10/2014 16/10/2014 : Project Proposal Deadline Read around the
subject, examine methods employed by existing videogames, pro-
duce some small prototypes to test ideas.

20/10/2014 23/10/2014 : Ethics Self-Assessment Deadline
27/10/2014 Begin coding with game content iteration.
03/11/2014 Week 2 of coding.
10/11/2014 Week 3 of coding.
17/11/2014 Week 4 of coding.
24/11/2014 Week 5 of coding. Aim to begin level generation iteration this week.
01/12/2014 Week 6 of coding.
08/12/2014 Prepare for inspection week: Produce software-testing for all

aspects of the project that are vital to the project inspection. Build
a version of the program appropriate for the inspection.

15/12/2014 Week 7 of coding.
22/12/2014 Week 8 of coding.
29/12/2014 Halfway point. Week 10 of coding. Level generation should be

implemented with Aim to begin dynamic di�culty adjustment it-
eration this week.

05/01/2015 Week o� from coding. Do some user testing.
12/01/2015 12/01/2014 : Spring Term Begins. Work on removing any re-

maining errors and polishing necessary functions to get the project
into a presentable state for demonstration week. Start working on
a draft of the final report.

19/01/2015 Continue working on necessary functions, and if finished, begin
work on optional functions. By the end of this week, should have
an instance of the project built as an application that would be
appropriate for the demonstration. Optional function to prioritise:
on the fly map generation.

26/01/2015 Continue working on optional functions and final report.
02/02/2015 Optional functions, final report. This is a bu�er week that has been

kept relatively empty to allow for any previous deadlines overrun-
ning.

09/02/2015 Aim to finish a draft of the final report by the end of this week.
Start working on the non-application aspects of the demonstration:
a presentation and a loose script (should take a few days at most).

16/02/2015 Mainly a bu�er week. Should finish optional features and prepara-
tions for demonstration.

23/02/2015 23/02/2015 : Demonstration Week
02/03/2015 Finish final report.
09/03/2015 Project Deadline. Finish final report.
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B Questionnaire
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C UML Diagrams
C.1 Spline Followers

Figure 31: Spline follower class structure

InfiniteSpline
spline: Vector3[]
DecrementCurveIndexes()

O�setController
speed : Float
o�set: Vector2
Update()

O�setControllerPlayer O�setControllerEnemy O�setControllerBullet

SetTarget(target : O�set-
Controller)

SplineFollower
t: Float
speed : Float
expandSpline: bool
curveIndex: int
MoveAlongSpline(distance:
Float)
Update()
OnCollideWithAsteroid()
OnCollideWithBullet()
OnCollideWithPowerup()

o�set
1

splineObjects
0..*

SplineFollowerPlayer
health: int
powerupcount : int
Fire()
SpeedUp()
CachePoints()

SplineFollowerEnemy
health: int

SplineFollowerBullet
health: int
Charge()
Fire()
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C.2 Spline Object Pools

Figure 32: Spline object pool class structure
InfiniteSpline

spline: Vector3[]
Update()

SplineObjectPool
lastSpawnT : float
Check()
DeactivatePassed()

splineObjectPool
0..*

ObjectPool
pooledObjects :
List<GameObject>
CreateGameObject()
GetPooledObject()

objectPool
1

PowerupPoolEnemyPool PlayerBulletPool

EnemyPool RingPool
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